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ABSTRACT 

We study the corrections to any secondary Regge trajectory 

arising from repeated exchange of the Pomeranchuk singularity. 

Using renormalization group methods we are able to determine the 

form of all Pomeron, Reggeon Green’s functions in the neighborhood 

of J = a(o) = 1 for the Pomerons and J = o,(#)=+ for the Reggeons. 

Starting with bare linear trajectories for both Pomerons and Reggeons 

we establish how these are modified by a triple Pomeron and a two 

Reggeon-Pomeron coupling. In an expansion of the theory around 

D = 4 space dimensions (D = 2 is where physics takes place) we find 

three allowed stable points of the renormalization group equations in 

the infrared k + 1 or (I~(@( limit. For each of these we study 

the renormalized Reggeon trajectories and the structure of the 

Green’s functions. 
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I. INTRODUCTION 

The t-channel exchange of Reggeons like the PI, p , A2 , etc. 

has a firm place in hadronic physics folklore as providing both the 

correct large s description of amplitudes involving quantum number 

exchange and the corrections, down by approximately 6 , to diffraction 

scattering governed by the Pomeranchuk singularity. The fact that 

the Pomeron has J-plane intercept a(0) = 1 leads to the well known 

observation’ that t-channel exchange of a Reggeon with intercept CY~(O) 

and any number of Pomerons yields a series of branch points in J 

at aR(0) . This piling up of singularities in J means that the structure 

of the Reggeon exchange in the neighborhood of J = cuR(0) and t = 0 

could be modified from the usual simple pole which is penomenologically 

so attractive. 

In this paper we will employ renormalization group techniques 

to discuss the corrections to a Reggeon~ arising from any number of 

Pomeron exchanges and interactions. We will proceed along the lines 

laid down in previous work on interacting Reggeons 2,3 by first 

establishing a field theory for Pomerons and Reggeons. Although our 

methods will clearly be applicable to a variety of different situations 

(some of which we will discuss in our concluding section) we confine 

our detailed calculations to a theory where the bare (non-interacting) 

J plane physics consists of two poles linear in t 
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a0 (t) = a0 + c$t (1) 

and cuROft) = CUR0 + ahOt . (2) 

Then we choose for the interaction a triple Pomeron coupling 2,3 and 

an R-R-P coupling (See Fig. 1) which preserves the number of Reggeons. 

This last choice is motivated by our desire to concentrate on the 

neighborhood of J = ~~(0) , the renormalized intercept of the Reggeon 

singularity, and t near zero. Interactions which allow production of 

Reggeons with Q,(O) < 1 give rise to singularities lying further to the 

left in the J plane and are not of any particular interest to us. 

Perhaps at this juncture it will be useful to recall a similar 

problem from quantum electrodynamics: the alteration of a charged 

boson propagator, (4 - p2)-l > taking into account all interactions 

with a massless photon. In studying this problem near p2 
2 

=m , the 

renormalized mass, it makes eminent sense to neglect all three and more 

boson inter mediate states in the calculation; of course, all photon states 

are to be treated. Since by changing the names (Pomeron+massless 

photon; Reggeon -t boson) this situation is qualitatively identical to the 

Reggeon problem, it is useful to recall the results of the electrodynamics 

calculation. The bare propagator changes from 
c 
ini - p ’ ) -i into 

m2 - p 2 -l+K 
> (in most gauges) where K is the anomalous dimension. 
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We can expect very much the same consequence of the interacting 

Reggeon problem; namely a bare propagator 
[ 
J - CY 

RO(t)]-i 
will change 

into CJ - (I~@)]-~-~ . { 

(y ctj 

This will result in a change from s R in 

the Reggeon exchange amplitude into s 
@,(V 

(log s)K . I There 

are, of course, differences in detail between the Reggeon problem 

and electrodynamics. First, with photons one has a gauge variant 

Green’s function to compute. Second, Pomerons can interact directly 

without the intermediary of other Reggeons. Photons do not convert 

into other photons in the absence of intermediate charged boson pairs, 

which we have argued one ought to neglect. The Pomeron problem, 

therefore, is slightly more complicated. 

Our calculation takes advantage of the fact that in D = 4 space 

dimensions of the Reggeon space, the theory we will set up in the next 

section possesses a scale invariance. The physics of real interacting 

Reggeons takes place at D = 2 . We follow the lead of Ref. 2 and 3 by 

carrying out our calculations in a general number of dimensions and 

then expanding the results about D = 4 . This procedure is justified, 

as in the strictly Pomeron case, by the existence of a renormalized 

dimensionless coupling constant, which is of order m and which 

is the appropriate expansion parameter for the problem. Actually we 

find three possible values of the dimensionless RRP coupling constant 

which could, in principle, govern the behavior of the interacting Greents 

functions near J = aR(0) and t = 0 . Each of the three coupling 



-6- NAL-Pub-74/33-THY 

constants if of order m and is a stable point (infrared) of the 

renormalization group equations. To choose among the three solutions 

requires principles in addition to the formal structure of the renormalization 

group program. We will indicate our preference at the appropriate 

moment, but it will be clear we are adding to the rules of the game. 

The problem of Pomeron corrections to a Reggeon exchange has 

been treated before in the literature. Basically there are two approaches: 

(1) One pretends that the Reggeon exchange and the Pomeron 

exchange are two scattering “potentials”. Then by some eikonal or 

impact parameter-absorption technique 4, 5 one takes an infinite number 

of Pomeron exchanges into account while treating the Reggeon in first 

order perturbation theory. Interactions between the Pomerons and 

Reggeons are neglected. A Reggeon exchange graph as in Fig. 2 is 

included in these calculations. Typically higher order Pomeron exchanges 

contribute corrections (-i)n s cuR 
/(log SF from these considerations. 

A Reggeon interaction graph such as Fig. 3 is not evaluated by these 

absorptive procedures: we will include it. 

(2) As part of their program to study Reggeon interactions via 

the Schwinger-Dyson equations of Reggeon field theories, Gribov and 

his collaborators6 have explicitly considered the theory in this paper. 

Beginning with the linear trajectory in Eq. (2), they argue that either 

the RRP coupling must be zero and the renormalized pole is determined 

by an RRPP coupling to be 
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a,(t) = CR(O) + cqR t - Ct/(log t)3 (3) 

or the linear trajectory changes form dramatically to 

n,(t) =aR(0)*ik hi-t (4) 

fort< 0 . 

Although we have not yet studied the former case it is reminiscent 

of the results in the pure Pomeron problem when only a quartic interaction 

is present. 
7 In the work in this paper where we do examine the latter 

case, we do not find anything resembling the fi trajectory of Gribov, 

et al. We do find that for each of the possible stable points of our 

equations that there is a Regge trajectory of the form 

crR(t) = cYR(0) + "ktp I (5) 

but the power p is either one or deviates from it by a small, computable 

number. 

The solution, Eq. (4), of Gribov, et al. is nevertheless extremely 

intriguing, for it is the kind of result one might expect not from an 

initial linear trajectory, but #rom an initial trajectory of h/F form 

itself,interacting with a Pomeron whose singularity is something like 

1 n (6) 

with a and n some constants. In the present work we have not 
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examined this attractive theory. The linear trajectories appeared 

both attractive enough and indeed are intricate enough in detail to 

provide a substantial discussion in themselves. We hope to return to 

this problem, coupled with the consideration of pure Pomerons with 

the structure of Eq. (6). 
8 

The plan of this paper will be to introduce the Reggeon-Pomeron 

field theory in Sec. II. Much of the background for this section is to 

be found in Ref. 2 and 3 and for the uninitiated in the classical work 

of Gribov. 
9 In this section we will also establish the renormalization 

group equations and obtain the scaling laws for the full Green’s functions. 

The infrared behavior 
{ 

J+aR(0) or cr(O) , t small 
1 

is the subject of 

Sec. III. Section IV will present what information one can extract from 

the combination of scaling laws derived from the solution of the 

renormalization group equations and the expansion about 4 space 

dimensions suggested by the fact that the effective renormalized 

coupling constants are of order &% . A final section is devoted to 

a brief discussion of our results and some thoughts on future investigations. 

II. FIELD THEORY FOR INTERACTING REGGEONS AND POMERONS; 
RENORMALIZATION GROUP EQUATIONS 

In a Reggeon field theory a non-interacting Reggeon is taken to be 

a quasi-particle with an energy momentum relation 

E(;;) = 1 - my(;) (7) 
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where (Y t=-]ql ( 
-+ 2) 

IS the ordinary Regge Trajectory, and the energy 

is in general l-angular momentum. The non-interacting theory clearly 

depends on what (Y (;;) one begins with. We shall study in this paper a 

theory where both the bare (streaking?) Pomeron and bare Reggeon 

have linear trajectories given respectively by 

cu,b) = cro + cY;t (8) 

and (YRO(V = PRO + @kOt (9) 

or E(;;)= LY; z2 + A, (10) 

and E 
RC 0 @kO? + AR0 9 (11) 

where A0 = 1 - (Ye , (12) 

and AR0 = 1 - aRO > 

are the mass gaps for the two bare trajectories. 

The action which describes this situation is 

A0 =px dt]i$(:,t)~ &,t) - rrb+Ve 

-a,$+$ +;x+ (g&x (2) - hoax+. r6x 

- aROX+X 
i (14) 

with a field C$ ($,t) for the Pomeron and a field X (z, t) for the Reggeon. 
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These fields are defined in D space dimensions g . Physics takes 

place at D = 2 ; it will be convenient to leave D free for now. 

The interaction is described by a Lagrangian density 

“;(zt) =,q [m+(:,t)2 $5(h)+ d+(;,t)m2(;.t)]+ 

-ikoX+(~,t)X(~,t)[~+(~,t)+~(~,tjl+d$+o+GRX+X . 

The first two terms in the interaction Lagrangian describe a triple 

Pomeron coupling and a Reggeon-number conserving Reggeon-Reggeon- 

Pomeron interaction. The last two quantities are mass counter terms 

to be determined order by order in perturbation theory in p. and A0 . 

The two coupling constants PO and A0 are real as is dictated by the 

general signature analysis of Gribov. This last remark means 

immediately that the one Reggeon-one Pomeron cut occurs with a 

negative sign with respect to the one Reggeon pole term in an expansion 

in A 
0 * 

This is strongly supported by phenomenological analyses of 

quantum number exchange processes. 

Since the Reggeon number operator is conserved, we may make a 

phase change on the field operator X x, t r > 

Xg,t + e ( > 
lAROt 

x z,t ( 1 (16) 

which leaves the commutation relation 
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[x+(z,t), x(~~t)]=P(~--;) (17) 

and the interaction unmodified and replaces E = 1-J for a Reggeon by 

E-AR,,=~R,,-J3&?. (18) 

We will, therefore, discuss this theory in terms of Ei = 1 - Ji for 

Pomerons and gi = (~~(0) - Ji for Reggeons. If Reggeon number were 

not conserved, this little trick would fail. 

Our objects of study will be the Green’fs functions for n Pomerons 

+ k Reggeons -, m Pomerons + k Reggeons. This is defined by 

Gcn’ m’k)ei>Zi>q iTj> ‘( gEi +$q -gE’{ gg:) 

s fj+ dti E djt; dt; 6 
1=1 j=i 

dDyj dT j dDyj’dr .( 
3 

exp i TiS ci - Eiti - ~~~~+E$~ + Fj* gj - &$rj - Fj’*$j’+ $$-ri 

<O / ++(+i)... q++(-,tn) ~(~~,tI)...~(;;~,t~)x+(~~,ll)... 

(19) 

see Figure 4. 
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The Pomeron Green’s functions G 
(n, m;o) will be unaffected by the 

Reggeon field so the results in Ref. 2 and 3 for those quantities may be 

carried over directly. Our task here is to study the Green’s functions 

for k> 0 . 

From the action we may extract the Feynman graph rules to be 

used in evaluating G (n,m;k) m a perturbation series in ,b 
0 

and +) . 

They are as follows: 

1. Draw all topologically distinct diagrams with arrows indicating 

the direction of propagation of Reggeons and Pomerons. 

2. 
s 

dDq dE around each loop 

3. At each triple Pomeron vertex put a factor of ~~O/(2n)~’ . 

4. At each RRP vertex put a factor of ko/(2n)%’ *’ 

5. For each mass renormalization counter term put a factor of 

i6 or i6 
R * 

6. For each Pomeron of momentum z and energy E use the bare 

propagator 

G~.~:~)(E,~~)= i [E- ~6 G2 + ie]-’ 

7. For each Reggeon of momentum $ and energy &?+ AR use 

the bare propagator 

Gr’ “I) (g’;;“) = i [&$~&o~2 + ic] -’ 
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8. For each two Pomeron loop with both momenta in the same 

direction, multiply by + . 

9. Conserve energy and momentum at all vertices. 

Our equations will all be expressed in terms of the connected 

proper vertex functions I? (n, m;k) which are defined by amputating the 

b, wk) external legs of the connected Green’s functions G connected : 

I?( “J”~“‘(Ei&qT.), = 
i G 

(1,1:0) 
ki’fiz)“ jj” 

z (f,i;O) E/I 12 -Ii (7) 1’ i 

s?i G(o, 0;1) g p’2 i ) -I G(o,w) ,g ;;2 
-1 

j=i 
j' j ( ) j' j 

GF;,m,zted (+$$ . (20) 

One may now proceed to evaluate the I? (n, m;k) as a function of 

the parameters cb ,ako, v. and +, to whatever order is desired. 

These quantities will be renormalized by the interaction and take on 

new values (Y’, (~1 R , r, and A . We shall always determine the 

counter terms 6 and 6P so that the singularities of the renormalized 

-2 inverse propagators pass through J=i at <‘=O and J=cuR(0) at p =o. 

We guarantee this by 
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+2 
q =o 

and 
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=o. (21) 

rvw)~~~2) Igio = 0 . 
-2 p =o 

(22) 

The renormalization procedure replaces the unrenormalized fields 

C$ (g;t) and X(z,t) by Z-- i 6 and ZR+X respectively. This takes an 

unrenormalized vertex function P (nam’k) into its renormalized 
U 

counterpart r b, m;W via 

r( n’m;k) (Ei.~i.~,r;i,r,A,n’,~~,EN) = 

n+m 

7 2: r:“‘m’k’(Ei,;;i,~.~i,~O, ~,dgs~;loa~) . (23) 

Here EN > 0 is a point where we choose to normalize the vertex 

functions r in order to define the renormalized parameters r , X, 

(~1 and (I’ . 
R 

As explained in Ref. 3 it replaces the renormalized mass 

gap A = 1 - a(O) . The parameter A in PU is a cutoff one may wish 

to use to regularize the integrals appearing in the unrenormalized 

theory. 

We define the renormalized parameters, which are functions of 

EN, by the following conditions on the vertex functions 
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a . 
,El’ E=-EN 

-2 
q =o 

2 i p,o;i) 
a~,g 

-2 N 
p =o 

2 i r(” l’“) (E,;;‘) IETeE 
a? -2 N 

q =o 

a 
- i rcoao;‘) (Kg’) IgzmE +2 
ap 

s2= 0 
N 

=1 , 

= @‘(EN) , 

= -q$EN) , 

D+1 

(24) 

(25) 

(26) 

(27) 

r(L2Y3) E 
( 

; 7 

1’ 1’ J-E3>~3) I+E2=2E3;-EN = MEN)/(271) ” J 

qi= 0 
(28) 

and 
D+I - 

r(‘J iil) ~l,~i@~~i,El ,;;I 1 
c ’ ’ 1 @2gi2E;,-EN 

=YEN)/(2n) ’ . 

f;,=~,=~,=o (29) 

These parameters are not directly the actual slope of a renormalized 

trajectory or a renormalized coupling. They are simply a set of 
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normalization numbers which serve to parameterize the renormalized 

vertex functions. 

We choose to replace the constants mk(EN), @(EN) and NEN) by 

the dimensioness quantities 

‘WE NJ 

istEN) = C”I’EN’IDI~ END’4-.i a 

which plays an important role in the Pomeron problem, 

II 
D/4 ’ 

and 

(30) 

(31) 

v(EN) = LY&(E~)/~(E~) . (32) 

Expressing the P (n,m;k) . m terms of these allows us to write 

r( n'm'k'.(Ei,~i,~'~j'g,gR,~l,v,EN) = 

E rE 
N N 

,a,1V=n-m-WD/4 + 
n,m;k(->+~ ii& i$g'gRJ)J 

(33) 
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using ordinary dimensional analysis. This last observation means 

r ( n’mik)(~~i,~i’~~‘~J~J~~‘(Y~‘Y’EN) = 

cr (n, m;k) 
which will prove useful shortly. 

The equations of the renormalization group follow from the 

observation that the unrenormalized vertex functions cannot know 

about E 
N , so 

-r( . 
a 

EN aEN 
n,m;k) = o 

U 

(34) 

(35) 

This translates, using (23)’ into the constraint on I? b. m;k) 

where the various renormalization group functions are defined by 

a 
P=ENqg ’ (37) 
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N 
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(38) 

gR = EN& logZR , 
N 

(39) 

(40) 

5 = EN& (Yl , 
N 

and 

o=EN+, 
N 

(41) 

(42) 

all derivatives to be taken at fixed PO , X0, (Y;, ~1 
RO 

, A and dimension 

D . 

Several of this zoo of functions are dependent only on the Pomeron 

parameters g and ~5 , namely (3 ,#, and c/c,’ . Indeed since they 

are dimensionless, they are functions of g only. The evaluation of 

these functions has been carried out in Ref. 3. Our problem is to 

discuss the additional dimensionless functions (3, ,$R and o which 

depend on g , gR and v . 

Utilizing the scaling property of the l? (n,m;k) m (34) we are able 

to trade off a derivative with respect to EN for a derivative with 

respect to the scale factor 8 
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iI a a a 5 a 
5Ypwag-PRagR-LY’f-; 

( ) 
a 

a(y’-“’ 

+ kijR - Ij l+n,m’k) (SEi,~i,~~~,g,gR,ol,v.EN) = 0 . 

(43) 

The solution of this equation is 

r( n’m’k) 

r( 

exp~-~dtf/~- ~$EW] - ktPy(~~(tl),WR(tt),~(tl)] 1 , (44) 

where t = log 5 . g(t), g,(t),... are solutions of the characteristic 

equations 

dE (t) 
- = -P[2+(t)] I dt (45) 

Bt = 1 - a$p= “[g (t)] , (46) 

dg R(t) = 
dt -PR[B(tL~Rww] J (47) 

(t),“v(t) 1 J (48) 
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g (0) = g, 2 R(O) = gR, C!(O) = (11, and V (0) = v . (49) 

Without knowing the detailed form of the p’s, $1~~ etc. we, of 

course, cannot solve for the effective couplings g(t), slcpe z g(t), and 

slope ratio ? (t) . Knowing the renormalization group functions in 

detail is tantamount to solving the whole Reggeon field theory. To 

make any progress one must evaluate these functions in perturbation 

theory. Many of the deductions about the form of P h m;k) 
may 

transcend perturbation theory, but one is forced to begin there. If one 

is lucky, then the effective coupling constants g (-t) and g ,(-t) entering 

in (44) will be small in the limit of interest (E + 0 , t = log 5 + - m) . 

If that is the case, then perturbation theory will receive an a posteriori 

justification. 

III. INFRARED PROPERTIES OF THE 
RENORMALIZATION GROUP EQUATIONS 

In the discussion of the purely Pomeron field theory ” 3 it was 

suggested that an expansion of the theory around D=4 space dimensions 

would provide a method for estimating the Pomeron Greents functions to 

high accuracy. Indeed the effective coupling g (-t) was shown to retreat 

to a small coupling, of order m, as t -t-m . This behavior 

indicated that perturbation theory might be reliable for determining 

the infrared behavior of the Green’s functions. 
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In particular it was found that the functions ,#(g) and 5 /Q ’ were 

and 

where 

fig) = -2Kg’ (50) 

2 
c/c’=-Kg , (51) 

K= ; D’2 ry3-D/Z) 
0 4(ZlT)D 

(52) 

To leading order in E = 4-D the function p(g) was determined to be 

P(g) = -g ; - 6W2 ’ [ 1 , (53) 

g; = ~/24K , (54) 

whose zero at 

determines the infrared behavior of Pomeron Green’s functions. 

Our immediate aim here will be to locate zeros in p, which have 

dp/dgR> 0 and will thus determine the infrared behavior of the Pomeron - 

Reggeon Green’s functions. We must first determine the various 

renormalization group functions in perturbation theory. To this 

end we begin with the lowest order correction to the Reggeon propagator 

p, O:$) as shown in Fig. 5: 
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2 iX 0 
dDq dE i i 

(21r)D+1 

Utilizing our normalization conditions this yields 

1 4K D/2-2 
-:i-- 
zR 2-p 

C ilD’2 EN ’ 

gR = -4Kg; , 

“k(EN) = “ho i + [- 

4K 2~ 
2-D/2 gR l+v ’ I 

and 

uz-i2& I 4g;v - gQ+v) 
i 

. 

(57) 

(58) 

(59) 

(60) 

It is clear at this stage that the presence of the two dimensionless 

parameters gR and Y = ffk/al will complicate life a bit. 

In order to obtain p, we evaluate the graphs shown in Fig. 6 at 

the normalization point given in Eq. (29). After some algebra we find 

for P, from these graphs. 
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I 2 
2 Y 

_ 4KgRg(3+4 

P, = %R 4 c+Kg l+v- 
t+!J (61) 

We now desire to extract from the characteristic equations (45) - 

(48) the large t behavior of g(t), Z*(t), g,(t) and C(t) . In other 

words we must search for the fixed points of these equations. We have 

already indicated that the fixed point of the equation for g(t) occurs at 

g=k+. We may use this value of g in the equations for g R(t) and 

5 (t) when analyzing their fixed points. They then become a pair of 

coupled equations in two variables. To analyze them it is convenient 

to introduce the matrix 

~k,>V) = 

ap R apR - 

agR 
av 

. --I 

a0 a0 

agR z 

(62) 

Then the necessary and sufficient conditions for the point (gR1.vl) to 

be a stable fixed point are that 10 

PR(gR1’ q= qgR*’ Vf) = 0 (63) 

and ReXi> 0 , (64) 

where the Xi are the eigenvalues of $(g,, V) . To see this we note 

that in the neighborhood of (g,,, 1 v ) Eq. (47) and (48) can be linearized 

and written 
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dZ 
x= 

There will always be a matrix g such that either 

(65) 

(66) 

or 

A1 O p,B-*= o i ) “2 ’ 

B A B-j = -“,b Q 

and in the latter case A1 = A 2 
= A . NOW write % = ,B 2 and find 

W,(t) = Wl(0)e 
- A1 t 

and W2(tl = W2(0)e 
-“2t 

9 

when (67) holds, or 

W,(t) = W,(o)e-” , 

and W,(t) = 
[ 
W2(0)-tW1(0) e-’ , 1 

(67) 

(6% 

(70) 

(71) 

(72) 

when (68) is true. In either case there is a stable fixed point, 

WiW + 0, t +m, only if the eigenvalues have positive real parts. 
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Three stable fixed points emerge from this analysis 
11 

: 

Case I g=g, * 

gR1 = g,/2 I 

and y1 =o; 

Case II 

Case III 

g=g 1 ’ 

gR1 = g+ =gpE- *, I 

and V1=m ; 

(73) 

(74) 

gR1 = g- = -glm+ *, , 

and VI=m. (75) 

Notice that in each case the fixed point of the dimensionless coupling 

constants are order fi . With precisely the same force as in the 

Pomeron problem one may argue here that for small values of E the 

use of perturbation theory to calculate the renormalization group 

functions is quite justified. Furthermore, for small E , perturbation 

theory may be used to give a reliable estimation of P h ml-4 
on the right 

hand side of (44) in the regime f -0 . In other words, we have a 

perturbation scheme to calculate the renormalized Pomeron - Reggeon 

Green’s functions in the neighborhood of J = ~(0) = 1 for Pomerons 

and J = ~~(0) for Reggeons. Whether or not the actual value of E 
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needed for physics, namely E = 2 , is indeed small enough, is 

certainly an open question at this juncture. 

We are now prepared to solve the characteristic equations for 

large t . To leading order in 5 = et one finds 

E c-t) ---1, g1 2 
t-- m 

q-t) --) oJca;z(g~) 
t-+m 

as in the straight Pomeron problem, and 

&t-t)--+ g tdern R1 ’ 

wz vc 5 
w $1 

. Y 

In these formulae C and C 
c! Y 

are constants which depend on the 

renormalized parameters Y , g and g 
R ’ Their evaluation is 

outlined in Ref. 3. 

The explicit values of z(g,) and w(g,) are 

z(g,) = 1 + Kg; = 1 +e/24 I 

and for Case I 

and = e/24 , 

(761 

(77) 

(78) 

(791 

(8’3) 

(82) 
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while for Case II and Case III 

gR1 = g* , (83) 

and (84) 

(85) 

With these results in hand we can investigate the constraints on 

I?( n, m;k) which follow from the solution to the renormalization group 

equation as given in Eq. (44). First note that 

;I 1-zp 
I “[g (t’;l - d$ [W) > g,(t’), V (t’)] 

n+m 1 -n+@(g4kkBk(gi.gRi. “I ) 
(86) 

where Cbp and Cy. 
R 

are two more constants depending on g, gR, and 

” Now we learn that for small Ei and gj and fixed zi and Gj 

I?( n, m;k) (Ei, zi, g, gR’ @‘> “> EN) = 

n+m 

‘Cm ,hN$- 

El 

1 

fCY’ 2 
-~~(g,)-k$RR(gi,gR1. vi)-z(gf)f(2-m-n-2k) 

fe 
X 

EN 4 [ 1 
2 (2-n-m-2k) 

x 
Ca”t 

rp 
n, m;k 

Ei -E 
-z(g,) &,. ;, - 

-E’ EN 
,o 

J 
EN 

(87) 
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where we have introduced the total energy 

E= SE.+& 
jx1 l j=* J 

(88) 

as a scaling variable. These scaling laws follow immediately from 

the solution to the renormalization group equations combined with the 

dimensional analysis contained in Eq. (33). 

Unfortunately these scaling rules are much less powerful than 

those which obtain in the Pomeron field theories. 
3 

There the total 

energy E entered the unknown scaling function only in conjunction 

with the inner product of momentum vectors. Here, however, because 

of the behavior of V( Q as c- 0 , it enters in a second fashion. This 

means that we can conclude neither very strong general results about 

a renormalized Reggeon trajectory from the form of I? (0, Oil) nor, 

strictly speaking, the strong general scaling laws for Reggeon exchange 

amplitudes - both these nice features were present in the Pomeron 

problem, 

This, by the way, appears to be the essential point of departure 

of our results from the work of Gribov, Levin and Migdal. 6 
Although 

their methods are quite different, it would appear that they did not 

take sufficient account of the role that the dimensionless ratio Y = cyh/cy’ 

plays in the analysis. 
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We are able to go slightly beyond the present stage by combining 

the scaling result in Eq. (87) with the expansion in E . The next 

section is devoted to this. 

IV. THE RENORMALIZED REGGEON TRAJECTORY 

In this section we will concentrate on the renormalized inverse 

Reggeon propagator I? (0,0;1) . In order to obtain the scaling function 

a! 0,o:i as a power series in E it is necessary to obtain solutions to 

the characteristic equations which are valid for all values of t , not 

just for t - m . Fortunately, we are free to choose the initial 

conditions so as to simplify the calculation. 

First consider Case I where v1 = 0 . Here it is convenient to 

start with the initial values g = gl, g 
R = +g,) and v << 1 . Then 

working to leading order in E and Y , one finds for all values of t 

i?(t) = ve 
-Kg) 

(89) 

iTR(t) = +gl + +glv 
-Kg;t -6Kg;t 

-e >. (90) 

For Cases II and III where y1 = m , it is convenient to take the initial 

values to be g = gi , gR = g-h and v >> 1 . Then to leading order in 

E and lJv 
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“v(t) = ve (91) 

g*D 
g,(t) = g* - y 

-ldg,)t 

e -e (92) 

where I is given in Eq. (84) and 

p(g,) = W$ - gig*) (93) 

D = K(8g$ - 8glg+ - &() . (94) 

In all cases g(t) = gl and Cl(t) = (~1 e 
-zkl)t 

It is clear that with these values for the characteristic functions 

Eq. (87) can be written in the form 

ir 0,0;1 

= EN exp dt’ I-VR [ 1 

‘gR1> vsEN 
> 

+ 5(-t) (95) 

for all values of t . Since gi and gR1 are of order E + 
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one can obtain @ and ‘P, , by calculating i r 
0,o:i 

0 
to second order 

in perturbation theory. From Eqs. (55)-(59) we see that 

ire, O;f = g- a’“;2 

+ 4KgRf(s g2- t!)/ i-log[$$, - $1 . (96) 

For values of t = In forwhich eltl << 1 one can equate powers 

of E in Eqs. (95) and (96) to find 

$(x. y) = - (f+xy) (97) 

E@*b,Y) = 4g if ('++ - 10+$'$]. (98) 

Then by considering values of t for which E ) t [ << i one sees that to 

order E 

L 
+2 

i@ 5’ (-t)p 
0,0;1 

EN 
,7(-t) 1 [ = $ 5’ pP2 ,q-t) 

N 1 
+ E @ 

’ c(-t’ . 1 (99) 

The properties of the Reggeon trajectory can now be read off. In 

Case I, where v1 = 0 , there is a zero of I’“‘o’l when xy+l is 
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close to zero, so 

aR(-g2) = a*(O) - g2(c c a ““k’ + OkP4) . (100) 

That is the trajectory remains linear but has its slope renormalized. 

This is an attractive result. In Cases II and III, the renormalized 

pole appears at 

oR(-.i;‘) = crR(O, + E 
N 

(101) 

-2 In this case, the trajectory as not analytic at t = -p = 0 . In fact 

it has an infinite slope there. This, less attractive result, is very 

similar to the behavior of the Pomeron trajectory in the pure Pomeron 

field theory. Which of the three fixed points actually controls the 

infrared behavior of the theory depends, of course, on the input values 

of g, gR and Y . 

V. DISCUSSION 

In this paper we have examined an interacting field theory of 

Pomerons and Reggeons to discover how their interaction modifies the 

input form for the Reggeon singularity in the angular momentum plane. 

We considered in detail here the case where the input for each of the 

Pomeron and the Reggeon was a simple linear trajectory. Our main 
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result is that in the infrared limit Pomeron angular momenta tend 

to one; Reggeon angular momenta tend to u*(O); all t’s small1 there 

are three stable fixed points to the renormalization group equations 

evaluated in lowest order of perturbation theory for the triple Pomeron 

and Reggeon-Reggeon-Pomeron couplings. The instruction that this 

may be a sufficient order of perturbation in which to operate comes 

from the observation that each of the coupling constants at the stable 

points is small in Reggeon space dimensions near four. All our results 

then were cast in terms of an expansion about D = 4 . 

For each of these stable points we were able to derive general 

scaling laws for the renormalized Green’s functions. These do not 

coincide with the scaling rules found by Gribov, Levin, and Midgal. 
6 

The essential reason for this appears to be their neglect of the behavior 

of the ratio of renormalized Reggeon and Pomeron slopes in the infrared 

regime. 

By exploiting these scaling forms and utilizing our E - expansion 

we found the renormalized Reggeon trajectory for each stable point. 

In one case, this yielded a linear trajectory with a renormalized slope. 

In the other two cases, however, the trajectory was more severely modified 

and acquired an infinite slope at t = 0 . One’s natural preference is for 

the linear trajectory with small corrections. Unfortunately since in 

the pure Pomeron problem 2,3 the trajectory developed a cusp, one is 

forced to contemplate the singular alternatives. 
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The scaling rules derives here are not sufficiently strong to 

enable us to predict the behavior of amplitudes involving Reggeon 

exchange as was possible for the Pomeranchuk singularity. By treating 

the problem in the E - expansion, however, we can make some statement 

about the zero momentum transfer amplitudes, From the graph in 

Fig. 7, which gave the leading behavior in s for the Pomeron case 

we discover for a Reggeon of signature 
TR 

TAB (s, 0) s=mpApB e f 

-iTcuR ff,w 
(: 

where gR = / 1 12 when the trajectory is linear and $R = (9*4 47) I 

in the other cases. The corrections to this leading term are cert ,a 

102) 

12 

inly 

something that we have little confidence in. However, it seems quite 

safe to conjecture that they are (a) negative in sign at t = 0 and (b) 

down by (log s) -P where p=l f 2 as in the Pomeron case. Estimates 

based on rather cavalier treatment of the scaling laws bear this out. 

We would like to end on a guardedly optimistic note. The calculations 

presented here will clearly be modified in detail but rather the same in 

procedure for any Reggeon field theory consideration of Pomeron 

corrections to a given Reggeon exchange. Our detailed conclusions in 

this paper have rested rather heavily on the expansion of the theory 

about D = 4 dimensions. Recent calculations to higher order in 
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12 E = 4-D in the Pomeron problem indicate that the convergence of 

such an expansion is problematic. This suggests one look for theories 

which are effectively free in the infrared limit 7.8 and require no 

e - expansion. An attractive example of such a renormalization group 

bootstrap is found in Ref. 8 and interestingly enough has much the 

6 same general appearance as the results of Gribov, et al. It seems 

very worthwhile to examine the possibility that a fl type trajectory 

can be realized by Reggeons in interaction with Pomerons of the same 

variety. We shall return to this matter. 
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FIGURE CAPTIONS 

Fig. 1 

Fig. 2 

Fig. 3 

Fig. 4 

Fig. 5 

Fig. 6 

Fig. 7 

(a) The bare triple Pomeron vertex. It has strength 

‘be 

(b) The bare Reggeon-Reggeon-Pomeron vertex. It 

conserves Reggeon number and has strength X0 . 

Dotted lines are Reggeons; wiggly lines, Pomerons. 

A Pomeron exchange graph which is included in the 

usual eikonal or absorption treatment of Pomeron 

corrections to Reggeon exchange. 

An example of a graph omitted by eikonal methods. 

The full Reggeon-Pomeron Green’s function. 

The lowest order correction to the Reggeon 

propagator. 

The graphs needed to evaluate the renormalization 

group functions in lowest order of perturbation 

theory. 

The leading contribution to the AB + AB elastic 

amplitude due to Reggeon exchange corrected by 

Pomeron interactions. 
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